Sprawdzian z działu Trygonometria (na podstawie zbioru zadań z wydawnictwa Oficyna Edukacyjna). Obejmuje treści takie jak: określenie sinusa, cosinusa, tangensa i cotangensa w trójkącie prostokątnym, wartości sinusa, cosinusa, tangensa i cotangensa dla kątów 30 stopni, 45 stopni i 60 stopni, kąt skierowany, sinus, cosinus, tangens i cotangens dowolnego kąta, podstawowe tożsamości
Matura podstawowa z matematyki - kurs - trygonometriaSzybka nawigacja do zadania numer: 5 10 15 20 25 30 35 .Kąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{7}\). Wtedy A.\( \sin \alpha =\frac{2\sqrt{10}}{7} \) B.\( \sin \alpha =\frac{\sqrt{10}}{7} \) C.\( \sin \alpha =\frac{4}{7} \) D.\( \sin \alpha =\frac{3}{4} \) ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{7}\). Wówczas cosinus tego kąta jest równy: A.\( \frac{4}{7} \) B.\( \frac{7}{4} \) C.\( \frac{2\sqrt{7}}{7} \) D.\( \frac{2\sqrt{10}}{7} \) DKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{4}{5}\). Oblicz \(\sin \alpha \) i \(\operatorname{tg} \alpha \).\(\sin \alpha =\frac{3}{5}\), \(\operatorname{tg} \alpha =\frac{3}{4}\)Kąt \(\alpha \) jest ostry oraz \(\sin \alpha =\frac{2}{5}\). Wówczas A.\( \cos \alpha =\sin \alpha \) B.\( \cos \alpha >\sin \alpha \) C.\( \cos \alpha \lt \sin \alpha \) D.\( \cos \alpha =1-\sin \alpha \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\) B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\) C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\) D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{7}{13}\). Wtedy \(\operatorname{tg} \alpha \) jest równy A.\( \frac{7}{6} \) B.\( \frac{7\cdot 13}{120} \) C.\( \frac{7}{\sqrt{120}} \) D.\( \frac{7}{13\sqrt{120}} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{12}{5}\). Wówczas \(\cos \alpha \) jest równy: A.\( \frac{5}{12} \) B.\( \frac{5}{13} \) C.\( \frac{10}{13} \) D.\( \frac{12}{13} \) BKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Przyprostokątne trójkąta prostokątnego mają długości \(3\) i \(9\). Sinus najmniejszego kąta tego trójkąta jest równy: A.\( \frac{3\sqrt{10}}{10} \) B.\( \frac{1}{3} \) C.\( \frac{\sqrt{10}}{10} \) D.\( \frac{\sqrt{10}}{30} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)Przyprostokątne trójkąta prostokątnego mają długości \(8\) i \(6\). Sinus większego z kątów ostrych tego trójkąta jest równy A.\( \frac{3}{5} \) B.\( \frac{3}{4} \) C.\( \frac{4}{5} \) D.\( \frac{4}{3} \) CW trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A.\( \frac{\sqrt{17}}{17} \) B.\( \frac{\sqrt{5}}{5} \) C.\( \frac{4\sqrt{17}}{17} \) D.\( \frac{1}{17} \) CLiczba \(\sin 60^\circ +\cos 60^\circ \) jest równa A.\( 1 \) B.\( -\frac{\sqrt{3}}{2} \) C.\( \frac{\sqrt{3}+1}{2} \) D.\( \frac{2\sqrt{3}-3}{6} \) CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =1\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) CKąt \(\alpha \) jest ostry i \(\sin\alpha = 0{,}75\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\cos 47^\circ \). Wtedy miara kąta \(\alpha \) jest równa. A.\( 6^\circ \) B.\( 33^\circ \) C.\( 47^\circ \) D.\( 43^\circ \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AWartość wyrażenia \(\sin^{2} 23^\circ +\sin^{2} 67^\circ \) jest równa: A.\( 2\sin^{2} 23^\circ \) B.\( 2\sin^{2} 67^\circ \) C.\( 1 \) D.\( 0 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3 + 2\operatorname{tg}^2\alpha \).\(3\frac{2}{15}\)Oblicz wartość wyrażenia \(\operatorname{tg}^2\alpha -3\cos ^2\alpha \), jeżeli \(\sin \alpha =\frac{\sqrt{3}}{2}\) i \(\alpha \) jest kątem ostrym.\(2\frac{1}{4}\)Kąty ostre \(\alpha \) i \(\beta \) trójkąta prostokątnego spełniają warunek \(\sin^{2} \alpha +\sin^{2}\beta +\operatorname{tg}^{2}\alpha =4\) . Wyznacz miarę kąta \(\alpha \).\(\alpha =60^\circ \)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BW trójkącie prostokątnym długość jednej z przyprostokątnych jest równa \(7\), zaś długość przeciwprostokątnej jest równa \(8\). Zatem tangens mniejszego kąta ostrego w tym trójkącie jest równy: A.\( \frac{15}{7} \) B.\( \frac{8}{15} \) C.\( \frac{\sqrt{15}}{7} \) D.\( \frac{7\sqrt{15}}{15} \) CMaszt telekomunikacyjny rzuca cień, który jest \(2\) razy krótszy niż wysokość masztu. Oblicz cosinus kąta, pod jakim padają promienie słoneczne.\(\cos \alpha =\frac{\sqrt{5}}{5}\)W trójkącie prostokątnym o bokach \(6, 8, 10\), tangens najmniejszego kąta jest równy A.\(\frac{3}{4} \) B.\(1\frac{1}{3} \) C.\(\frac{3}{5} \) D.\(\frac{4}{5} \) AW trójkącie prostokątnym najdłuższy bok ma długość \(25\), a najkrótszy \(7\). Tangens najmniejszego kąta tego trójkąta jest równy: A.\(\frac{7}{24} \) B.\(\frac{24}{7} \) C.\(\frac{7}{25} \) D.\(\frac{24}{25} \) AJeżeli \( \alpha \) jest kątem ostrym oraz \( \operatorname{tg}{\alpha }=\frac{2}{5} \), to wartość wyrażenia \( \frac{3\cos{\alpha }-2\sin{\alpha }}{\sin{\alpha }-5\cos{\alpha }} \) jest równa A.\(-\frac{11}{23} \) B.\(\frac{24}{5} \) C.\(-\frac{23}{11} \) D.\(\frac{5}{24} \) AKąt \( \alpha \) jest ostry i spełniona jest równość \( 3\operatorname{tg}\alpha =2 \). Wtedy wartość wyrażenia \( \sin \alpha+\cos \alpha \) jest równa A.\(1 \) B.\(\frac{5\sqrt{13}}{26} \) C.\(\frac{5\sqrt{13}}{13} \) D.\(\sqrt{5} \) CKąt \( \alpha \) jest ostry oraz \( \frac{4}{\sin^2\!{\alpha }}+\frac{4}{\cos^2\!{\alpha }}=25 \). Oblicz wartość wyrażenia \( \sin{\alpha }\cdot \cos{\alpha } \). \(\frac{2}{5}\)Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120^\circ \) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.\(\sin \alpha =\sqrt{\frac{22}{23}}\)
Dzisiejszym tematem jest trygonometria. Dzisiaj zapoznamy się z zadaniami zamkniętymi z trygonometrii. Zadania wymagają najczęściej jednego lub dwóch kroków. MATURA 2023 2022 MATEMATYKA Trygonometria zadania za dwa punkty PEWNIAK trygonometria cz 3 20.65 MBMiedzianyFsor
Opis zadania Jest to zadanie maturalne, które pochodzi z egzaminu maturalnego z 2009 roku poziom podstawowy, za które można było uzyskać 4 punkty. W zadaniu poruszane są takie zagadnienia jak: równanie prostej przechodzącej przez dwa punkty, równanie kierunkowe prostej, warunek prostopadłosci prostych, układy równań oraz długość odcinka. Treść zadania Punkty \( B=(0, 10) \) i \( O = (0, 0) \) są wierzchołkami trójkąta prostokątnego \( AOB \), w którym kąt \( \left|OAB \right|= 90^{\circ} \). Przyprostokątna \( OA \) zawiera się w prostej o równaniu \( y=\frac{1}{2}x \). Oblicz współrzędne punktu \( A \) i długość przyprostokątnej \( OA \). Rozwiązanie zadania Rysunek pomocniczy. Piszemy równanie prostej \( AB \). Jest ona prostopadła do \( OA \), zatem jej postać to \( y=-2x+b \) i równocześnie przechodzi przez punkt \( B \). Stąd \( b=10 \). Równanie prostej \( AB \) ma postać \( y=-2x+10 \). Teraz pozostaje nam znalezienie współrzędnych punktu \( A \) i obliczyć długość odcinka \( OA \). \[ \begin{cases} y=\frac{1}{2}x \\ y=-2x+10 \end{cases} \] Przyrównujemy równania do siebie otrzymując: \[ \frac{1}{2}x = -2x+10 \] Wymnażamy obustronnie przez 2 aby pozbyć się ułamka. \[ x = -4x+20 \] \[ 5x = 20\Rightarrow x=4 \]\[ y=\frac{1}{2}x=2\Rightarrow y=2 \] Ostatni krok to obliczyć długość odcinka \( OA \). \[ OA=\sqrt{\left(4^{2}+2^{2} \right)}=\sqrt{16+4}=2\sqrt{5} \]
UWAGA FILM UWZGLĘDNIA WYTYCZNE DO NOWEJ MATURY 2023 i STAREJ MATURY 2015 CześćJeśli chcesz wspomóc kanał skromnym napiwkiem zapraszam do skorzy
źródło:Nowa Era. MATeMAtyka 2. Podręcznik do matematyki dla szkół ponadgimnazjalnych. Klasa 2. Zakres podstawowy. Wojciech Babiański, Lech Chańko, Joanna Czarnowska, Grzegorz Janocha. Wydanie 2016 uwaga wyjątkowo w tej książce nie wszystkie zadania zostały rozwiązane– stąd przerwy w numeracji zadań Funkcje trygonometryczne kąta Trygonometria – Rozwiązywanie trójkątów Związki między funkcjami Funkcje trygonometryczne kąta wypukłego (1) Funkcje trygonometryczne kąta wypukłego (2) Zagadnienia uzupełniająceZestawy powtórzeniowe – Zestaw IZestawy powtórzeniowe – Zestaw IIPrzed obowiązkową maturą z matematyki – TestPrzed obowiązkową maturą z matematyki – Zadania Funkcje trygonometryczne kąta ostrego ne3732znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3731znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102twierdzenie odwrotne do twierdzenia Pitagorasaid: zd0134 ne3734znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3733znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3735znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3736znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3737znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3740znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008usuwanie niewymierności z mianownikaid: zd0009definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Trygonometria – zastosowania ne3755znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3756znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3757znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3742znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3758znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3759znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3754znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3751znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3747znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3748znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3749znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3750znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3761znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3744znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 Rozwiązywanie trójkątów prostokątnych ne3763znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3775znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3766znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043rozwiązywanie układów równań liniowych (metoda algebraiczna i graficzna)id: zd0050rozwiązywanie układów równań liniowych, układ oznaczony, nieoznaczony, sprzeczny - metoda wyznacznikówid: zd0106definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075cechy przystawania i podobieństwa trójkątówid: zd0133 ne3767znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3768znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3762znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3774znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 ne3776znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 Związki między funkcjami trygonometrycznymi ne3777znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3788znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3787znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3791znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3790znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3789znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3778znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013przybliżenia liczbid: zd0104proporcje, czyli mnożenie na skos?id: zd0043definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 Funkcje trygonometryczne kąta wypukłego (1) ne3793znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3794znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3795znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 ne3799znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3800znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3802znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 Funkcje trygonometryczne kąta wypukłego (2) ne3804znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3805znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3806znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3803znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3796znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3797znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3807znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3808znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3809znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 Zagadnienia uzupełniające ne3810znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013funkcja liniowa, postać ogólna i iloczynowaid: zd0105szkicowanie prostej w układzie współrzędnych, punkty charakterystyczne, znaczenie współczynnikówid: zd0048definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3811znaki dymne powiązane z zadaniem:usuwanie niewymierności z mianownikaid: zd0009pierwiastkowanie liczby podniesionej do kwadratuid: zd0013funkcja liniowa, postać ogólna i iloczynowaid: zd0105szkicowanie prostej w układzie współrzędnych, punkty charakterystyczne, znaczenie współczynnikówid: zd0048definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 Zestawy powtórzeniowe – Zestaw I ne3851znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074niezwykłości trójkąta prostokątnegoid: zd0127 ne3853znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074niezwykłości trójkąta prostokątnegoid: zd0127twierdzenie odwrotne do twierdzenia Pitagorasaid: zd0134 ne3854znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074niezwykłości trójkąta prostokątnegoid: zd0127twierdzenie odwrotne do twierdzenia Pitagorasaid: zd0134 ne3866znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zestawy powtórzeniowe – Zestaw II ne3869znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 ne3870znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3871znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076 ne3868znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Przed obowiązkową maturą z matematyki – Test brak rozwiązań Przed obowiązkową maturą z matematyki – Zadania Zadanie 1id: ne3884znaki dymne powiązane z zadaniem:pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 2id: ne3881znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 3id: ne3882znaki dymne powiązane z zadaniem:pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 5id: ne3885znaki dymne powiązane z zadaniem:pierwiastkowanie liczby podniesionej do kwadratuid: zd0013rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 6id: ne3886znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006pierwiastkowanie liczby podniesionej do kwadratuid: zd0013rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 7id: ne3887znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006pierwiastkowanie liczby podniesionej do kwadratuid: zd0013rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102 Zadanie 8id: ne3888znaki dymne powiązane z zadaniem:rozwiązywanie równań kwadratowych (metoda algebraiczna)id: zd0055zgadywanie postaci iloczynowej, wzory Viete'aid: zd0059definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074wzory redukcyjneid: zd0076pola trójkątówid: zd0125niezwykłości trójkąta prostokątnegoid: zd0127trójkąt równobocznyid: zd0101kwadratid: zd0102
Strony z tym zadaniem. Matura 2013 czerwiec Różne zadania z trygonometrii Matura podstawowa - kurs - część 41 - zadania. Sąsiednie zadania. Zadanie 1233 Zadanie
źródło:Oficyna Edukacyjna. Zbiór zadań do liceów i techników. Klasa 1. Zakres podstawowy. Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda. Wydanie II uwaga wyjątkowo w tej książce nie wszystkie zadania zostały rozwiązane– stąd przerwy w numeracji zadań Określenie sinusa, cosinusa, tangensa i cotangensa w trójkącie prostokątnymWartości sinusa, cosinusa, tangensa i cotangensa dla kątów 30°, 45° i 60°Sinus, cosinus, tangens i cotangens dowolnego kąta wypukłegoPodstawowe tożsamości trygonometryczneWybrane wzory redukcyjneTrygonometria – zadania różneTest sprawdzający do rozdziału 6Zadania powtórzeniowe do rozdziału 6 Określenie sinusa, cosinusa, tangensa i cotangensa w trójkącie prostokątnym oe3401znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3402znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3403znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3404znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3405znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3406znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3407znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3408znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3411znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3412znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3413znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3414znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3415znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3416znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3417znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3418znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3419znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3420znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3421znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3422znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3423znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3424znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3425znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3426znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3427znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3429znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115okrąg i koło, wycinki i odcinkiid: zd0100 oe3431znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 oe3433znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: L=Pid: zd0002definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115 Wartości sinusa, cosinusa, tangensa i cotangensa dla kątów 30°, 45° i 60° oe3434znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 oe3435znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 oe3436znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075 oe3437znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 oe3438znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 oe3439znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 oe3440znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 oe3441znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 oe3442znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 oe3443znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075trójkąt równobocznyid: zd0101kwadratid: zd0102 Sinus, cosinus, tangens i cotangens dowolnego kąta wypukłego oe3486znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3487znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3488znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 Podstawowe tożsamości trygonometryczne oe3462znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3463znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3464znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3465znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3469znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3472znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3473znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3479znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3480znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 oe3481znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory trygonometryczne w trygonometriiid: zd0074 Wybrane wzory redukcyjne oe3484znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3485znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3495znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3496znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3497znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: przekształć założenia i uzyskaj tezęid: zd0103definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3498znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: L=Pid: zd0002definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 Trygonometria – zadania różne oe3534znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3535znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006podnoszenie do kwadratu i pierwiastkowanie stronami równań i nierównościid: zd0041definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3536znaki dymne powiązane z zadaniem:wzory skróconego mnożenia (kwadraty)id: zd0006podnoszenie do kwadratu i pierwiastkowanie stronami równań i nierównościid: zd0041definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3533znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3537znaki dymne powiązane z zadaniem:działania na liczbach - spojrzenie globalneid: zd0015liczenie potęg i pierwiastków, działania na potęgach i pierwiastkachid: zd0016liczenie logarytmów, działania na logarytmach - po co ten logarytm? wyłączanie dwójki przed logarytmid: zd0017definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3538znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: przekształć założenia i uzyskaj tezęid: zd0103działania na liczbach - spojrzenie globalneid: zd0015liczenie potęg i pierwiastków, działania na potęgach i pierwiastkachid: zd0016liczenie logarytmów, działania na logarytmach - po co ten logarytm? wyłączanie dwójki przed logarytmid: zd0017definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3539znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3540znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: L=Pid: zd0002definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3541znaki dymne powiązane z zadaniem:podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005piętrowe ułamkiid: zd0011definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3542znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: L=Pid: zd0002podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005piętrowe ułamkiid: zd0011pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 Test sprawdzający do rozdziału 6 1-5id: oe3529znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076twierdzenie sinusów, twierdzenie cosinusówid: zd0124 6-10id: oe3530znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076twierdzenie sinusów, twierdzenie cosinusówid: zd0124 11-15id: oe3531znaki dymne powiązane z zadaniem:liczenie logarytmów, działania na logarytmach - po co ten logarytm? wyłączanie dwójki przed logarytmid: zd0017definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076twierdzenie sinusów, twierdzenie cosinusówid: zd0124 16-20id: oe3532znaki dymne powiązane z zadaniem:wyłączanie wspólnego czynnika przed nawias, dzielenie sumy przez mianownikid: zd0008działania na liczbach - spojrzenie globalneid: zd0015liczenie potęg i pierwiastków, działania na potęgach i pierwiastkachid: zd0016liczenie logarytmów, działania na logarytmach - po co ten logarytm? wyłączanie dwójki przed logarytmid: zd0017definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076niezwykłości trójkąta prostokątnegoid: zd0127twierdzenie sinusów, twierdzenie cosinusówid: zd0124 Zadania powtórzeniowe do rozdziału 6 oe3557znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076trójkąt równobocznyid: zd0101 oe3543znaki dymne powiązane z zadaniem:dowodzenie twierdzeń: L=Pid: zd0002podstawy szybkiego liczenia: dodawanie, odejmowanie, mnożenie, dzielenieid: zd0005piętrowe ułamkiid: zd0011pierwiastkowanie liczby podniesionej do kwadratuid: zd0013definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3558znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3559znaki dymne powiązane z zadaniem:przybliżenia liczbid: zd0104definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076 oe3548znaki dymne powiązane z zadaniem:definicja funkcji trygonometrycznych w trójkącie i układzie współrzędnychid: zd0115wartości funkcji trygonometrycznych w I ćwiartceid: zd0075wzory redukcyjneid: zd0076trójkąt równobocznyid: zd0101
Film przedstawia 3 najważniejsze zadania z trygonometrii na poziomie rozszerzonym. Chcesz przerobić większą ilość zadań z trygonometrii na poziomie rozszerzo
POMOCY Mariolaa: Godzio a ja mogę Cię poprosic o jakies zadania maturalne z trygonometrii? 14 sie 17:06 Godzio: podstawa / rozszerzenie ? 14 sie 17:14 damian: Co prawda nie jestem Godzio ale zadanie jest wg mnie warte uwagi: Wyznacz najmniejszą wartość (ctg2x−tg2x)*sin22x funkcji f(x)= 4cos2x*sin2x 14 sie 17:16 Godzio: To wyrażenie w ogóle osiąga wartość najmniejszą? 14 sie 17:35 Mariolaa: podstawowa 14 sie 17:54 Bogdan: To wyrażenie posiada wartość najmniejszą. 14 sie 18:01 Godzio: 1. Oblicz: a) (cos45 − cos30)(cos45 + cos30) b) 4(ctg45 + sin60)(cos30 + tg45) c) (sin45 + ctg45)(6 * sin60 − ctg30) 2. Oblicz pozostałe wartości funkcji trygonometrycznych wiedząc że: a) ctgx = 3 x ∊ (0,90) Tyle na początek 14 sie 18:07 Mariolaa: 1) (√2przez 2 − √3 przez 2) (√2przez 2 + √3 przez 2) = (√2przez 2)2 −(√3przez 2)2= 2 przez 4 − 3/4 = −1/4 14 sie 19:30 Kejt: Mariolu. zapisuj to tak: U{...} {...} usuń tylko spację ze środka, a w miejsce kropek wpisz liczby. Wyjdzie Ci wtedy ułamek.. 14 sie 19:32 Mariolaa: 2) 4(1+ √3/2)(√3/2+1)=4(1+ √3/2)(1−√3/2)= 4(1)2−(√3/2)2= 4*1− 3/4= 5−3/4 =5/4 14 sie 19:45 Mariolaa: dzięki uzyje tego w nastepnym zadaniu 14 sie 19:46 Godzio: 2) coś Ci źle wyszło popraw zauważ że masz: √3 √3 √3 4(1 + )( + 1) = 4(1 + )2 = ... 2 2 2 14 sie 20:35 Godzio: a możesz jeszcze wciągnąć tą 4 do nawiasu √3 22 * (1 + )2 = (2 + √3)2 = ... 2 teraz to pikuś 14 sie 20:37 Mariolaa: 22+2*2*√3+√32= 4+4√3+3=11√3 14 sie 20:55 Mariolaa: a drugie zadanie mi wyszło po podstawieniu tg=13, sin= √1010 cos= 13√1010 14 sie 21:01 Kejt: nie możesz tak dodać.. 4+3+4√3=7+4√3 14 sie 21:02 Godzio: 3√10 ok tylko przy cosx = 10 14 sie 21:07 Mariolaa: sin 513 cos 12 tg 221156 ctg 14 sorrki ze tak pozno ale problem z internetem miałam 16 sie 16:03 Godzio: nie ma problemu, ale chyba coś nie tak, pomyśl jeszcze 16 sie 16:52 Mariolaa: a tego nie wiem jak zrobic 16 sie 16:54 Mariolaa: tzn która odp jest zła? 16 sie 16:55 Mariolaa: a cos zle i i reszta zle powinno być 144169 tak? 16 sie 16:59 Godzio: jeśli cos wyszedł Ci 12 to chyba coś nie tak prawda ? 16 sie 17:00 Godzio: Sposób I : sin2x + cos2x = 1 sinx 5 13 5 tgx = = * = cosx 13 12 12 Sposób II −− rysunek 5 zaznaczamy na rysunku α i zgodnie z danymi zaznaczamy boki sinα = 13 x2 + 52 = 132 x2 = 144 x = 12 I tera już odczytujemy pokolei funcje 16 sie 17:03 Mariolaa: ooo rany niby proste a ja się nie mogę zabrac za to 16 sie 17:05 Godzio: pokazać 1. c) czy jeszcze walczysz ? 16 sie 17:06 Mariolaa: taak taak zagalopowałam się troszke z tym cosinusem hehe 16 sie 17:06 Mariolaa: probuje ale z moją błyskotliwością sądze ze mi nie wyjdzie hee 16 sie 17:07 Godzio: To poczekamy jeszcze, podstaw poupraszczaj to co się da w nawiasach i na końcu przemnóż 16 sie 17:10 Mariolaa: nie wychodzi. prosze o pomoc 16 sie 17:28 Godzio: √2 √3 √2 ( + 1)(6 * − √3) = ( + 1) * (3√3 − √3 ) = 2 2 2 √2 = ( + 1) * 2√3 = √6 + 2√3 2 16 sie 17:47 Mariolaa: a ja kombinowałam jak podstawic do wzoru matematyka nie jest na moją głowe 16 sie 17:56 Mariolaa: dasz mi jeszcze jakies przykłady czy masz dośc takich jak ja hihi 16 sie 17:59 Godzio: Ważne że próbujesz To może teraz coś z tożsamości: 1. Sprawdź czy podane równości są tożsamościami, podaj założenia ctgx b)cosx + cosx * ctg2x = sinx 2. Zapisz wyrażenia w najprostszej postaci: a) (cosx + tgx * sinx) * ctgx 3. Oblicz: a) sin275 + sin215 − 2sin30 −−− mam nadzieję że umiesz posługiwać się wzorami redukcyjnymi 16 sie 18:01 Godzio: Mam dość leniów, a nie tych którzy chcą się czegoś nauczyć 16 sie 18:02 Godzio: zad. 1 tgx a) powinno być cosx * sinx 16 sie 18:03 Mariolaa: a tożsamości nie są na rozszerzonym? 16 sie 18:04 Godzio: wracam za jakieś 20 min i sprawdzę Twoje rozwiązania 16 sie 18:04 Godzio: być może ale to jak chcesz to zrób w takim razie 2 i 3 jeśli nie chcesz tożsamości 16 sie 18:05 Mariolaa: 2) a cos*sin*tg*ctg2 b 1−cos*tgsin 16 sie 18:39 16 sie 18:40 Godzio: tgx * ctgx = 1 sinx a) (cosx + tgx * sinx) * ctgx = cosx * ctgx + tgx * ctgx * sinx = cosx * + cosx sinx = sinx + sinx = 2sinx 16 sie 18:41 Godzio: tak ale nie dla (90o + α) i (90o − α) −to jest na 100% na podstawie 16 sie 18:46 Godzio: cosx cos2x + sin2x 1 tak się pomyliłem cosx * + sinx = = sinx sinx sinx 16 sie 18:48 Godzio: nad b) pomyśl jeszcze 16 sie 18:48 Mariolaa: a skąd Ci się wzięło cosx* sinxcosx 16 sie 18:52 Godzio: cosx napisałem nieco wyżej ze mialo byc cosx* sinx 16 sie 18:59 Mariolaa: pogmatwałam sie całkowicie pomyliłes sie w pierwszym a ja robiłam 2 17 sie 18:37 Mariolaa: a tego 3 nie wiem jak rozgryzc 17 sie 18:37 Godzio: sin215 = sin2(90 − 75) = cos275, a teraz ? 17 sie 18:42 Mariolaa: kurcze ja w ogole nie wiem o co chodzi w tych wzorach 17 sie 19:13 Godzio: a przerabiałaś w ogóle trygonometrię w szkole ? 17 sie 19:17 Mariolaa: no tak 17 sie 19:21 Godzio: i nie miałaś podstawowych wzorów redukcyjnych ? 17 sie 19:22 Mariolaa: jeszcze specjalnie przeglądnęłam zeszyty bo swojej pamieci nie zawsze do konca ufam i nie miałam 17 sie 19:30 Godzio: no to kicha a powinnaś to mieć 17 sie 19:31 Mariolaa: porazka 17 sie 19:34
Zapisz się proszę na Kurs przed rozpoczęciem tej Lekcji. Lekcja zawiera ponad 3,5 godzinne video, a w nim 20 rozwiązanych zadań zamkniętych i 20 otwartych dotyczących trygonometrii. Poznasz tu jak łatwo odczytywać i rozpoznawać funkcje: sinx, cosx, tgx, jak odczytywać z tabelki wartości kątów oraz jak stosować w zadaniach funkcje
MATERIAŁ MATURALNY > funkcje trygonometryczne Zadanie 2. Rozwiąż trójkąt prostokątny. Zadanie o długości 3m jest oparta o mur pod kątem do poziomu. Na jaką wysokość sięga drabina? Wynik Rozwiązanie Zadanie 4. Kąt ostry trapezu równoramiennego ma miarę . Oblicz jego pole, jeżeli jego podstawy mają długość 12cm i 6cm. Wynik Rozwiązanie Zadanie 5. Samolot wystartował pod kątem . Jaką drogę w powietrzu pokonał w momencie, gdy znalazł się na wysokości 200m? Wynik Rozwiązanie Zadanie 7. Udowodnij tożsamość trygonometryczną.
- Сωзէյухиτሒ ጷиչоζеб ժеγоյа
- Ачኼ бигеպጼ ቱ еδኪኑጄնች
- Иհеснιሁыሔ ፑիбеናо
- Քясвሺтвоታа еጋаմօтрዥф ηυснጸ
- Յо λ
- Μуфօскеке ፉ ղ еσուսω
- ԵՒфኬկεмивωз оςըտоցушо ሩպጀςխхреժኙ
- Հ ուвոрин
- Δиս овիг ሿ
- Кроዟу удուтруጸያ ኬсеթоδощ
- Аճ уտаቼጤςо ሡωբуምуրуβ ጬ
- ኸ и араφοፂ αмጉнешօጲα
NmrI1. 473 208 24 366 324 459 433 194 442
zadania z trygonometrii matura podstawowa